
Security Audit Report

Hermetica Labs:
Hermetica Smart Contracts

Final Audit Report: April 4, 2024

defense@thesis.co

mailto:defense@thesis.co

Table of Contents

About Thesis Defense...3
Scope... 3

Overview..3
Project Team... 3
Schedule..3
Code...3
Project Documentation.. 4

Findings...4
Threat Model...4
Security by Design.. 4
Secure Implementation... 5
Use of Dependencies... 5
Tests.. 5
Project Documentation.. 5

Issues and Suggestions... 6
Issues..6

Issue A: Lack of Access Control [Fixed].. 6
Issue B: Incorrectly Set Equality Check [Fixed]... 7
Issue C: Incorrect Validation in Trade Registration [Fixed]...8
Issue D: Incorrect Validation in start-new-epoch [Fixed]... 8
Issue E: A Zero Value of total-tokens-active Prevents Calculation of
get-underlying-per-token [Fixed]..9

Suggestions...9
Suggestion 1: Implement Input Validation for Setter Functions [Fixed]........................9
Suggestion 2: Publish Code Comments [Fixed]...10

Thesis Defense Security Audit Report 2

About Thesis Defense
Thesis Defense serves as the auditing services arm within Thesis, Inc., the venture studio
behind tBTC, Fold, Taho, Etcher, and Embody. Our team of senior security and cryptography
auditors has extensive security experience in the decentralized technology space. In addition,
the Thesis Defense team has a demonstrated track record in a variety of languages and
technologies, including, but not limited to, smart contracts, cryptographic protocols including
zk-cryptography, dApps including wallets and browser extensions, and bridges. Thesis Defense
has extensive experience conducting security audits across a number of ecosystems, including,
but not limited to, Ethereum, Zcash, Stacks, Mina, Polygon, Filecoin, and Bitcoin.

Thesis Defense will employ the Thesis Defense Audit Approach and Audit Process to the above
in-scope service. In the event that certain processes and methodologies are not applicable to
the aforementioned in-scope services, we will indicate as such in individual audit or design
review SOWs. In addition, Thesis Defense provides clear guidance on successful Security Audit
Preparation.

Scope
Overview

Thesis Defense conducted a manual code review of the Hermetica smart contracts.

Project Team

● Mukesh Jaiswal, Security Auditor
● El-Hassan Wanas, Senior Security Auditor
● Bashir Abu-Amr, Senior Technical Writer

Schedule

● Code Review:March 11 - 15, 2024
● Audit Report Delivery:March 15, 2024
● Final Audit Report Delivery: April 4, 2024

Code

● Audit

Thesis Defense Security Audit Report 3

https://thesis.co/defense
https://thesis.co/defense#team
https://thesis.co/blog/thesis-defense-security-audit-approach/
https://thesis.co/blog/security-audit-process:-what-to-expect-when-you%E2%80%99re-getting-a-thesis-defense-security-audit/
https://thesis.co/blog/maximizing-security-audit-success:-a-comprehensive-guide-to-audit-project-preparation/
https://thesis.co/blog/maximizing-security-audit-success:-a-comprehensive-guide-to-audit-project-preparation/

○ Repository: https://github.com/hermetica-fi/hermetica-contracts
○ Hash: bca6b9db31a827a912e6dd14b6facd84d09e0714

● Verification
○ Repository: https://github.com/hermetica-fi/hermetica-contracts
○ Hash: a9f12f6c67feaa6dad196c1d240453f7b4af7f96

● Reference Repository: https://github.com/hermetica-fi/hermetica-contracts-dev

Project Documentation

● Technical Documentation: https://docs.hermetica.fi/

Findings
The Hermetica smart contracts represent the on-chain component of the Hermetica options
vault protocol for BTC and Stacks sip-010 tokens. The smart contracts are implemented in
Clarity and are intended to be deployed on the Stacks blockchain.

The Stacks blockchain, which leverages Bitcoin's security and decentralization, is designed
with robust security mechanisms to protect its network and users. It integrates Bitcoin's Proof
of Work (PoW) consensus mechanism with its own Proof of Transfer (PoX) consensus
mechanism, allowing for flexible smart contracts while leveraging the robustness of the bitcoin
blockchain.

Threat Model

For this review, our team considered a threat model whereby external components to the
smart contracts are untrusted but function as intended. These components include any user
interface that enables interaction with the protocol, any off chain components that are an
integral part of the system, and any third party dependencies or services that are necessary for
the protocol to function as intended. Furthermore, we considered the governance of the
protocol not malicious.

In our investigation and threat model, we considered threats from malicious traders, sellers
and buyers, and observers. This facilitated our ability to consider and explore various attack
vectors during our review of the system design and coded implementation.

Security by Design

Hermetica’s system design is robust and the security of the protocol has been considered and
prioritized. This is demonstrated by the implementation of emergency mechanisms to mitigate
the effects of a vulnerability. Specifically, there is a set proportion of assets controlled by the

Thesis Defense Security Audit Report 4

https://github.com/hermetica-fi/hermetica-contracts
https://github.com/hermetica-fi/hermetica-contracts
https://github.com/hermetica-fi/hermetica-contracts-dev
https://docs.hermetica.fi/
https://github.com/stacksgov/sips/blob/main/sips/sip-010/sip-010-fungible-token-standard.md

vault that can be transferred within a one week time window, safeguarding deposits in the
vault.

Secure Implementation

The Hermetica smart contracts implementation is well organized and adheres to best
practices. We performed a manual code review of the implementation and, although we did not
identify any critical security vulnerabilities in the implementation, we did identify an
implementation error that would lead to unintended behavior (Issue B). We also identified a
public function that is callable by any user which would allow a deposit to be made without a
corresponding claim leading to a potential loss of funds.. However this issue would not affect
the security of the protocol itself since the function is intended to be used internally by the
core smart contract (Issue A). Additionally, we identified incorrect validation when registering
a trade, which would block registrations if the previous epoch was settled longer than 72
blocks in the past. This would require admin intervention with the force-settle function to
resolve (Issue C).

Use of Dependencies

Hermetica utilizes the Pyth oracle as a timestamp source as well as a price oracle for assets.
Specifically, the Hermetica smart contracts receive data from the Pyth oracle through the use
of the Wormhole bridge. The Pyth oracle is sufficiently decentralized, and we did not identify
any issues in the use of this dependency. Although there are general challenges associated
with cross-chain bridges such as the Wormhole bridge, we did not identify specific weaknesses
in the Wormhole bridge that are relevant to the context of the Hermetica smart contracts. As a
result, we found that Hermetica’s use of dependencies adheres to security best practices.

Tests

The in-scope repository for this security audit did not contain any tests. However, the
Hermetica team provided us with their dev repository (referenced above), which contains tests
that provide 100% coverage of the implementation covering every possible branch of
execution, in adherence with security best practice and industry standards for implementing a
test suite with sufficient coverage.

Project Documentation

The Hermetica smart contracts are comprehensively documented in accordance with best
practices. The documentation included comprehensive technical documentation that detailed
critical functionality of the smart contracts, and was supplemented by an architectural
diagram. We commend the Hermetica team for providing sufficient documentation, aiding both
developers and auditors familiarizing themselves with Hermetica protocol.

Thesis Defense Security Audit Report 5

Similar to the tests, the codebase is well commented in the dev repository. We recommend
publishing the code comments (Suggestion 2).

Issues and Suggestions

Issues Status

Issue A: Lack of Access Control Fixed

Issue B: Incorrectly Set Equality Check Fixed

Issue C: Incorrect Validation in Trade Registration Fixed

Issue D: Incorrect Validation in start-new-epoch Fixed

Issue E: A Zero Value of total-tokens-active Prevents Calculation of
get-underlying-per-token

Fixed

Suggestions Status

Suggestion 1: Implement Input Validation for Setter Functions Fixed

Suggestion 2: Publish Code Comments Fixed

Issues
Issue A: Lack of Access Control [Fixed]

Location

vault-v1.clar#L277

Thesis Defense Security Audit Report 6

https://github.com/hermetica-fi/hermetica-contracts/blob/bca6b9db31a827a912e6dd14b6facd84d09e0714/contracts/protocol/vault-v1.clar#L277

Description

The deposit-funds function is designed to move the underlying SIP-010 token from the
depositor to the vault smart contract. Ideally, the function should be accessed through the
core smart contract for payment processing by counterparties and delinquent counterparties
after calculating profits and losses. However, the function lacks access control.

Impact

If any depositor directly calls this function to deposit the underlying SIP-010 tokens, the
contract won't record any related data nor will it update the counterparty’s status for the
sender by settling the corresponding debt. This implies that any transferred amount will end up
locked in the contract without being properly processed or tracked and the user would
consequently have to resend the deposit via make-payment in order for their payment to be
counted towards a trade.

Remediation

We recommend implementing an appropriate access control mechanism for the function.

Verification Status

Fixed. The Hermetica team implemented validation confirming the caller of the function is the
core smart contract.

Issue B: Incorrectly Set Equality Check [Fixed]

Location

pnl-calculator-v1.clar#L160

Description

A knock-in option becomes active when the price reaches either the barrier up or barrier down
price levels. However, in the current implementation, when calculating the profit and loss
(PNL), the knock-in option is considered active only when the price exceeds the barrier up or
barrier down levels.

Impact

If the option type is a knock-in option (u3), the implication is that the profit and loss (PNL)
won't be computed even if the option becomes active.

Remediation

We recommend that the barrier price is included when checking the price by also checking for
equality.

Verification Status

Fixed. The Hermetica team has added an equality check on barrier-up and barrier-down in the
case of a knock-in option type.

Thesis Defense Security Audit Report 7

https://github.com/hermetica-fi/hermetica-contracts/blob/bca6b9db31a827a912e6dd14b6facd84d09e0714/contracts/protocol/pnl-calculator/pnl-calculator-v1.clar#L160

Issue C: Incorrect Validation in Trade Registration [Fixed]

Location

core-v1.clar#L421-L423

Description

In register-trade there is an assertion that the current block height is at most the previous
epoch’s settled block plus the registration window (72 blocks). If the previous block was
settled longer than that time window, all calls to register-trade would fail for the current
epoch forcing the use of force-settle in order to unblock the contract.

Impact

No trades can be registered for the current epoch due to the settlement block height of the
previous block being too far in the past.

Remediation

We recommend revising this assertion so that late settling of an epoch does not affect the
register-trade function.

Verification Status

Fixed. The Hermetica team has changed the assertion to check that trades are being registered
within 72 blocks (12 hours on average) of the current epoch start date.

Issue D: Incorrect Validation in start-new-epoch [Fixed]

Location

core-v1.clar#L362

Description

The Hermetica team identified an issue whereby an assert in start-new-epoch blocks
starting a new epoch if trades have been made in the current epoch.

Impact

This would block trading after having traded in the first epoch. This issue would not affect
assets in the vault.

Remediation

The assertionmust only be made in the case of overwriting an unsettled epoch, which ensures
that an unsettled epoch with confirmed trades needs to be settled before a new epoch is
started.

Thesis Defense Security Audit Report 8

https://github.com/hermetica-fi/hermetica-contracts/blob/bca6b9db31a827a912e6dd14b6facd84d09e0714/contracts/protocol/core-v1.clar#L421-L423
https://github.com/hermetica-fi/hermetica-contracts/blob/bca6b9db31a827a912e6dd14b6facd84d09e0714/contracts/protocol/core-v1.clar#L362

Verification Status

Fixed. The Hermetica team has updated the function implementation according to the
remediation.

Issue E: A Zero Value of total-tokens-active Prevents Calculation of
get-underlying-per-token [Fixed]

Location

vault-v1.clar#L276

Description

The Hermetica team identified an issue where total-token-active becomes zero in the
edge case where all funds are withdrawn from the vault, which leads to
get-underlying-per-token to fail due to a DivisionByZero error.

Impact

Since get-underlying-per-token is used in the claim activation functions this error
prevents future deposits and withdrawals to be activated.

Remediation

While calculating the value for underlying-per-token, the function must confirm that
neither current-total-token-active nor current-total-underlying-active is
zero.

Verification Status

Fixed. The Hermetica team has updated the function implementation according to the
remediation.

Suggestions
Suggestion 1: Implement Input Validation for Setter Functions [Fixed]

Location

hq-v1.clar#L327
hq-v1.clar#L332
hq-v1.clar#L285
hq-v1.clar#L296
hq-v1.clar#L306

Thesis Defense Security Audit Report 9

https://github.com/hermetica-fi/hermetica-contracts/blob/e453d3a078bb82ae37448fe546b7b2dbe727b9bb/contracts/protocol/vault-v1.clar#L276
https://github.com/hermetica-fi/hermetica-contracts/blob/bca6b9db31a827a912e6dd14b6facd84d09e0714/contracts/protocol/hq-v1.clar#L327
https://github.com/hermetica-fi/hermetica-contracts/blob/bca6b9db31a827a912e6dd14b6facd84d09e0714/contracts/protocol/hq-v1.clar#L332
https://github.com/hermetica-fi/hermetica-contracts/blob/bca6b9db31a827a912e6dd14b6facd84d09e0714/contracts/protocol/hq-v1.clar#L285
https://github.com/hermetica-fi/hermetica-contracts/blob/bca6b9db31a827a912e6dd14b6facd84d09e0714/contracts/protocol/hq-v1.clar#L296
https://github.com/hermetica-fi/hermetica-contracts/blob/bca6b9db31a827a912e6dd14b6facd84d09e0714/contracts/protocol/hq-v1.clar#L306

Description

The HQ smart contract defines all protocol settings with its corresponding getter and setter
functions as well as defines all of the protocol's roles. Setter functions which set the values for
security critical parameters including unit-size, registration-window,
confirmation-window, payment-window, vault-capacity, min-deposit-amount,
and others, lack input validation which can lead to unintended behavior.

For example, if the value of vault-capacity is set 0, then the user will not be able to deposit
their underlying token.

Remediation

We recommend implementing checks that validate the input values and ensure that they are in
the intended range.

Verification Status

Fixed. The Hermetica team has implemented the check in one instance(unit-size), but
stated that there are no security implications resulting from a lack of validation on the rest of
the referenced parameters. Our team agrees with this assessment.

Suggestion 2: Publish Code Comments [Fixed]

Description

The repository in scope does not include any code comments. The Hermetica team has written
comprehensive code comments in their dev repository, which were made available to us for
this security audit. We found the code comments to be comprehensive, accurate, and helpful in
understanding the intended functionality of security critical components.

Remediation

We recommend publishing the code comments to enable those who interact with the system to
build a deeper understanding of the functionality of the system, which improves security.

Verification Status

Fixed. The Hermetica team has published code comments for all of the public functions in the
implementation.

Thesis Defense Security Audit Report 10

