thessdefense@

Security Audit
Report

Zest Protocol

Zest Protocol Smart
Contracts

Initial Report / May1,2024
Final Report / May9,2024

Team Members

Jehad Baeth // Senior Security Auditor
Wanas Elhassan // Senior Security Auditor
Bashir Abu-Amr // Head of Delivery

Table of Contents

1.0 Scope — 2

L 11Technical Scope

L 1.2Documentation

2.0 Executive Summary — 3
L> 2.1Schedule

2.20verview

2.30bjectives

2.4Methodology

2.5Threat Model

2.6 Security of the Implementation

2.7Testing

2.8 Project Documentation

A R 2R e

2.9 Recommendations Summary

3.0 Key Findings Table — 6

4.0 Findings = 7

L 41Unvalidated Input in set-
health-factor-liquidation-treshold
Function

Low Fixed

L 4.20verly Complex borrow
Function

¥ None Fixed

L> 4.3Unnecessary Gas
Consumption

% None Fixed
5.0 Appendix A —10
6.0 Appendix B —12

®

Thesis Defense // Security Audit Report

Zest Protocol

About Thesis Defense

Thesis Defense serves as the auditing services arm within Thesis, Inc., the venture studio
behind tBTC, Fold, Taho, Etcher, and Mezo. Our team of security auditors have carried out
hundreds of security audits for decentralized systems across a number of technologies
including smart contracts, wallets and browser extensions, bridges, node implementations,
cryptographic protocols, and dApps. We offer our services within a variety of ecosystems
including Bitcoin, Ethereum + EVMs, Stacks, Cosmos / Cosmos SDK, NEAR and more.

Thesis Defense will employ the Thesis Defense Audit Approach and Audit Process to the in
scope service. In the event that certain processes and methodologies are not applicable to the
in scope services, we will indicate as such in individual audit or design review SOWs. In addition,
Thesis Defense provides clear guidance on successful Security Audit Preparation.

Scope

Technical Scope

o Repository: https:/github.com/Zest-Protocol/zest-contracts
¢ Audit Commit: 3a7d995287ee397cd0afb76196d0a3e2b62e5e37
o Verification Commit: 741d8d80dba21724d39b45e021dd574ea2aba499
o Filesin Scope:

o onchain/contracts/borrow/pool/liquidation-manager-vi-2.clar

o onchain/contracts/borrow/pool/pool-borrow-v1-2.clar

o onchain/contracts/borrow/vaults/pool-0O-reserve
o Files Out of Scope:
onchain/contracts/borrow/deployment/*
onchain/contracts/borrow/math/*
onchain/contracts/borrow/mocks/*
onchain/contracts/borrow/oracle/*
onchain/contracts/borrow/pool/fees-calculator.clar
onchain/contracts/borrow/pool/liquidation-manager.clar
onchain/contracts/borrow/pool/oracle.clar
onchain/contracts/borrow/pool/pool-borrow.clar
onchain/contracts/borrow/reads/*
onchain/contracts/borrow/token/*
onchain/contracts/borrow/trait/*
onchain/contracts/borrow/vaults/pool-reserve-data.clar
onchain/contracts/borrow/vaults/pool-vault.clar
onchain/contracts/borrow/vaults/borrow-helper.clar
onchain/contracts/borrow/vaults/supply-wrapped.clar

0O 0 0 0O 0O 0O OO OO O O 0O 0O ©°

Documentation

o Developer documentation: https:/docs.zestprotocol.com/dev-docs

https://thesis.co/defense
https://thesis.co/defense#team
https://medium.com/thesis-defense/thesis-defense-audit-approach-75949aab90fb
https://medium.com/thesis-defense/security-audit-process-what-to-expect-when-youre-getting-a-thesis-defense-security-audit-3845b82bb027
https://medium.com/thesis-defense/maximizing-security-audit-success-a-comprehensive-guide-to-audit-preparation-16d43b09715d
https://github.com/Zest-Protocol/zest-contracts
https://docs.zestprotocol.com/dev-docs

®

Thesis Defense // Security Audit Report

Zest Protocol

Executive Summary

Schedule

This security audit was conducted from April 18,2024 to May 1,2024 by 2 senior security
auditors for a total of 4 person-weeks.

Overview

This security audit report outlines our approach and details the findings and outcomes of our
security audit of the Zest Protocol smart contracts. Zest Protocol is a Stacks blockchain-based
lending protocol that leverages Clarity smart contracts. The main protocol feature that we
targeted in this security audit was functionality handling, including:

e Deposits into and withdrawals from the liquidity pools where liquidity providers can
deposit their assets to generate returns;

e Borrowing from and repaying into the borrowing pools;

¢ The management of collateral and liquidation for cases where a borrowing position
becomes undercollateralized; and

o Flashloans.

Overall, we found that the Zest Protocol team has strongly and demonstrably considered
security in their due diligence approach to the security of their protocol. Specifically, they
solicited the services of several auditors, including individual white hats and security auditing
teams. In addition, they shared information and findings across all participants to promote
transparency and optimize coverage of the smart contracts. This approach creates both the
redundancy and comprehensive coverage necessary to minimize the potential for security
vulnerabilities.

Objectives

We identified the following objectives and areas of concern for our security audit:

e Claim ownership validations and the ability of suppliers (i.e. liquidity providers) to always
withdraw all of their assets, unless they are being used as collateral or being borrowed
against;

e Callerrequest validation flows;

e Manipulating the health factor, a critical metric in lending protocols which is determined
by the level of collateralization of a borrow position, to exploit the protocol’s liquidation
mechanisms;

e Manipulating the liquidation-bonus (liquidation spread). Liquidation spreads are used to
incentivize liquidations and if manipulated by an attacker, they may be able to disrupt
the protocol’s liquidation mechanism;

e Aborrower using an unapproved assets as collateral to make a borrow position;

o Clarity smart contracts bugs and code smells;

e Gas cost reduction and optimizations; and

e Protocol configuration actions authentication.

®

Thesis Defense // Security Audit Report

Zest Protocol

Methodology

o We conducted a threat modeling exercise to determine an appropriate threat and trust
model for the smart contracts;

e We performed a line-by-line manual code review of the smart contracts in scope, in
addition to manual review of some out of scope code where necessary, specifically to
verify that the core public functions of the protocol behave as expected;

o We created tests and performed testing on the attack surfaces set out in the objectives
section of this audit report; and

o We performed a close investigation and analysis of the known issues provided to us by
the Zest Protocol team during the audit, which included issues and proofs of concept
(POCs) from security audits performed by other security auditors on recent versions of
the smart contracts in scope, the smart contracts that are the target of our current
security audit, in addition to the protocol functionality that is outside of the scope of our
audit (e.g math.clar).

Threat Model

We conducted a threat model that included malicious users and observers of the protocol as
the main threat actors. In doing so, we considered the governance of the protocol (out of scope)
to be sufficiently decentralized and not malicious. We assumed that all out of scope
components are not trusted, but functioned as intended.

Other security auditing parties were auditing the out of scope components in parallel to our
review. All findings were shared with us, including PoCs, suggestions, and fixes to any issues
identified. The issues shared with us during the audit relating to our scope of work have been
verified and addressed in the audit commit hash.

Security of the Implementation

In our manual code review of the smart contracts, we found that the implementation
demonstrates good overall code quality and adherence to smart contract implementation best
practices with a modular design, appropriate error handling, and an intuitive function and
variable naming convention.

During our review of the implementation, we found that some functions are prone to complexity
and should be simplified Issue 3. Increased complexity can result in potential oversights and
errors that may lead to vulnerabilities and, as a result, breaking these functions down into
smaller, more focused components would improve code readability and maintainability. This
also facilitates easier understanding and upgradeability of the code.

In addition, we found that the system implements appropriate error handling, with case-
specific errors allowing for robust and reliable operation.

Testing

We found that the Zest Protocol codebase implements a test suite that provides sufficient
coverage of the implementation. However, some in scope system components lacked proper
tests due to recent changes in the codebase. Specifically, the pool-borrow-vi-2.clar smart
contract had no tests implemented. As a core smart contract and an in scope component for
our security audit, we wrote tests in order to sufficiently test the correctness of its
functionality.

®

Thesis Defense // Security Audit Report

Zest Protocol

In our testing, we investigated the attack surfaces detailed in the objectives section of this
audit report. Our tests ruled out the following scenarios:

o Closing a borrow position by making a partial payment during liquidation;

e Closing a borrow position without repaying the entire amount;

e Aliquidator liquidating more assets than needed to end under-collateralization during
liquidation;

e Aseverely under-collateralized position that is fully liquidated but does not lead to
closing the position;

e Aborrower benefits from self-liquidation of a borrow position;

o Closing a borrow position by repaying with a different asset than what was borrowed;

e Asupplier (liquidity provider) withdraws more than the amount they supplied, excluding
the pool earnings;

e Repaying a closed borrow position;

e Closing a borrow position by making a partial payment during liquidation;

o Creating a flashloan without paying the flashloan fee; and

e Repaying more than a borrow positions value in liquidation;

Through manual code review and testing, we confirmed the following assumptions:

¢ Repayingininstallments yields correct calculations; and
e Repaying a borrow position with a surplus amount to the loan value deducts only the
outstanding balance.

The tests created and used in this review have been shared with the Zest Protocol team.

Project Documentation

The documentation provided by the Zest Protocol team was sufficient to inform and facilitate
our understanding of the smart contracts. This allowed us to sufficiently reason about the
correctness of the implementation and intended functionality. We recommend continuous
updates to the documentation and improvements to the code comments as the codebase
continues to evolve and the smart contracts are modified for improvements.

We also note that during the security audit, the Zest Protocol team was readily available to
answer our questions and to facilitate a comprehensive understanding of the smart contracts.

Recommendations Summary

During this security audit, we identified a low severity issue (Issue 1) that is related to the lack of
implementation of input validation, which mitigates against unintended outcomes when
administering and configuring the smart contracts.

After rigorous code review and testing of the core public functions of the smart contracts we
did not identify any critical, high, or medium severity security issues that can impact the core
functionality of the Zest Protocol.

We also noted that little input validation is implemented on key protocol parameters, thus
making their configuration prone to human error. We recommend adhering to best practices in
implementing sanity checks on security critical parameters where applicable.

Key Findings Table

Issues Severity Status
ISSUE #1 Unvalidated Input in set-health-factor-liquidation-treshold L@ Fixed
Function

ISSUE #2 Overly Complex borrow Function ¥ None Fixed
ISSUE #3 Unnecessary Gas Consumption Y% None Fixed

Severity definitions can be found in Appendix A

®

Thesis Defense // Security Audit Report

Zest Protocol

®

Thesis Defense // Security Audit Report

Zest Protocol

Findings

We describe the security issues identified during the security audit, along with their potential
impact. We also note areas for improvement and optimizations in accordance with best
practices. This includes recommendations to mitigate or remediate the issues we identify, in
addition to their status before and after the fix verification.

ISSUE #1

Unvalidated Input in set-health-factor-liquidation-treshold
Function

Low Fixed

Location

pool-O-reserve.clar#L53-1L.56

Description

The set-health-factor-liquidation-treshold function inthe referenced smart contract
does not validate the value range of its input, allowing for the possibility of a Health Factor
Liquidation Threshold either too low (less than one) or too high. This vulnerability could lead to
increased false positive cases where more accounts would be deemed insolvent and trigger
unnecessary liquidations, as well as reduced sensitivity to actual insolvency risks if the
threshold is set too high.

Impact

Awrongly set Health Factor Liquidation Threshold value could trigger unnecessary liquidations
of borrow positions.

Recommendation
We recommend implementing input validation and range checking for the Health Factor
Liquidation Threshold value in the set-health-factor-liquidation-treshold function.This

can be achieved by adding a simple check to ensure that the input value is within a valid range
(e.g., greater than or equal to one).

Verification Status

The Zest Protocol team has implemented the recommendation.

https://github.com/Zest-Protocol/zest-contracts/blob/3a7d995287ee397cd0afb76196d0a3e2b62e5e37/onchain/contracts/borrow/vaults/pool-0-reserve.clar#L53-L56

®

Thesis Defense // Security Audit Report

Zest Protocol

ISSUE #2
Overly Complex borrow Function
¥ None Fixed

Location

pool-borrow-vi-2.clar#1187

Description
The borrow function in this smart contract contains multiple nested conditions, making it

difficult to read and understand. This complexity can lead to errors and bugs that may be hard
to detect or fix.

Impact
No security impact.
Recommendation

We recommend splitting the borrow function into smaller, more manageable functions (e.g.,
borrow-with-isolated and borrow)to improve readability and maintainability.

Verification Status

The Zest Protocol team has implemented the recommendation.

https://github.com/thesis/zest_protocol/blob/3a7d995287ee397cd0afb76196d0a3e2b62e5e37/onchain/contracts/borrow/pool/pool-borrow-v1-2.clar#L187

®

Thesis Defense // Security Audit Report

Zest Protocol

ISSUE#3

Unnecessary Gas Consumption

¥ None Fixed

Location

pool-borrow-vi-2.clar#L169

pool-O-reserve.clar#1663

Description

We identified an opportunity to optimize gas consumption by simplifying the comparison logic.
Specifically, the following code snippet can be optimized to remove unnecessary arithmetic
operations:

(if (is-eq (- current-balance amount-to-redeem) u0))

This code checks if the difference between current-balance and amount-to-redeem isequal
to 0. However, instead of subtracting these values and then checking for equality, it’s more
efficient to use the is-eq operator directly on the two values.

By removing the unnecessary subtraction, we can reduce gas consumption and improve
contract performance.

Impact

If left unchecked, this issue may lead to increased gas consumption and slower contract
execution times. This could result in higher transaction costs for users.

Recommendation

We recommend replacing the code snippet with a more efficient implementation using is-eq:
(if (is-eq current-balance, amount-to-redeem))

Verification Status

The Zest Protocol team has implemented the recommendation.

https://github.com/Zest-Protocol/zest-contracts/blob/3a7d995287ee397cd0afb76196d0a3e2b62e5e37/onchain/contracts/borrow/pool/pool-borrow-v1-2.clar#L169
https://github.com/thesis/zest_protocol/blob/3a7d995287ee397cd0afb76196d0a3e2b62e5e37/onchain/contracts/borrow/vaults/pool-0-reserve.clar#L1663

®

Thesis Defense // Security Audit Report

Zest Protocol

Appendix A

Severity Rating Definitions

At Thesis Defense, we utilize the Immunefi Vulnerability Severity Classification System -v2.3.

A Critical

e Manipulation of governance voting result deviating from voted outcome and resulting in
a direct change from intended effect of original results

o Direct theft of any user funds, whether at-rest or in-motion, other than unclaimed yield

o Direct theft of any user NFTs, whether at-rest or in-motion, other than unclaimed
royalties

e Permanent freezing of funds

e Permanent freezing of NFTs

e Unauthorized minting of NFTs

e Predictable or manipulable RNG that results in abuse of the principal or NFT

¢ Unintended alteration of what the NFT represents (e.g. token URI, payload, artistic
content)

e Protocolinsolvency

2\ High

e Theft of unclaimed yield

e Theft of unclaimed royalties

e Permanent freezing of unclaimed yield

e Permanent freezing of unclaimed royalties
e Temporary freezing of funds

e Temporary freezing NFTs

Medium

e Smart contract unable to operate due to lack of token funds

e Block stuffing

e Griefing (e.g. no profit motive for an attacker, but damage to the users or the protocol)
e Theft of gas

e Unbounded gas consumption

Low

e Contract fails to deliver promised returns, but doesn’t lose value

10

https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-3/

®

Thesis Defense // Security Audit Report

Zest Protocol

¥ None

e« We make note of issues of no severity that reflect best practice recommendations or
opportunities for optimization, including, but not limited to, gas optimization, the
divergence from standard coding practices, code readability issues, the incorrect use of

dependencies, insufficient test coverage, or the absence of documentation or code
comments.

1

®

Thesis Defense // Security Audit Report

Zest Protocol

Appendix B

Thesis Defense Disclaimer

Thesis Defense conducts its security audits and other services provided based on agreed-upon
and specific scopes of work (SOWs) with our Customers. The analysis provided in our reports is
based solely on the information available and the state of the systems at the time of review.
While Thesis Defense strives to provide thorough and accurate analysis, our reports do not
constitute a guarantee of the project’s security and should not be interpreted as assurances of
error-free or risk-free project operations. It is imperative to acknowledge that all technological
evaluations are inherently subject to risks and uncertainties due to the emergent nature of
cryptographic technologies.

Our reports are not intended to be utilized as financial, investment, legal, tax, or regulatory
advice, nor should they be perceived as an endorsement of any particular technology or project.
No third party should rely on these reports for the purpose of making investment decisions or
consider them as a guarantee of project security.

Links to external websites and references to third-party information within our reports are
provided solely for the user’s convenience. Thesis Defense does not control, endorse, or assume
responsibility for the content or privacy practices of any linked external sites. Users should
exercise caution and independently verify any information obtained from third-party sources.

The contents of our reports, including methodologies, data analysis, and conclusions, are the
proprietary intellectual property of Thesis Defense and are provided exclusively for the
specified use of our Customers. Unauthorized disclosure, reproduction, or distribution of this
material is strictly prohibited unless explicitly authorized by Thesis Defense. Thesis Defense
does not assume any obligation to update the information contained within our reports post-
publication, nor do we owe a duty to any third party by virtue of making these analyses
available.

12

	Table of Contents
	Zest Protocol

	Security Audit Report
	Zest Protocol
	Zest Protocol Smart Contracts
	Zest Protocol

	Table of Contents
	Zest Protocol

	About Thesis Defense
	1
Scope
	Technical Scope
	Documentation
	Table of Contents
	Zest Protocol

	2
Executive Summary
	Schedule
	Overview
	Objectives
	Table of Contents
	Zest Protocol

	Methodology
	Threat Model
	Security of the Implementation
	Testing
	Table of Contents
	Zest Protocol

	Project Documentation
	Recommendations Summary
	Table of Contents
	Zest Protocol

	3
Key Findings Table
	Table of Contents
	Zest Protocol

	4
Findings
	Unvalidated Input in set-health-factor-liquidation-treshold Function
	Location
	Description
	Impact
	Recommendation
	Verification Status

	Table of Contents
	Zest Protocol

	Overly Complex borrow Function
	Location
	Description
	Impact
	Recommendation
	Verification Status

	Table of Contents
	Zest Protocol

	Unnecessary Gas Consumption
	Location
	Description
	Impact
	Recommendation
	Verification Status

	Table of Contents
	Zest Protocol

	5
Appendix A
	Severity Rating Definitions
	Table of Contents
	Zest Protocol

	Table of Contents
	Zest Protocol

	6
Appendix B

